XJ05 RADIAL PISTON MOTOR

CONTENTS

02	Aboutus
03	XJRange
04	Product features
05	Quick selection diagram
06	No load pressure drop Volumetric efficiency
07	Motor order code
09	Torque unit single speed option
10	Torque unit two speed option
11	Torque unit compact housing
13	Shaft motor single speed with spline
14	Shaft motor two speed with spline
15	Shaft motor output options
16	Shaft motor permissible dynamic and static radial load Shaft motor L10 life
17	Wheel motor single speed option
18	Wheel motor two speed option
19	Wheel motor permissible dynamic and static radial load Wheel motor L10 life
20	Parking brakes
21	Direction of shaft rotation
22	Hydraulic connections
23	Extra options - speed sensor
24	Torque output Starting torque
25	Power envelope single speed Power envelope two speed - preferred direction
26	Power envelope two speed - non-preferred direction
27	Calculations

ABOUT US

Rotary Power specialises in the design, development and manufacture of hydraulic motors and pumps.

With a history dating back over 50 years, we understand the exacting and demanding requirements of today's hydraulic applications.

Operating from 18,000 sq. m. of purpose built manufacturing facilities, based in the North East of England and Bangalore, India, we continue to invest in the latest CNC machinery, automation and testing facilities. We have a clear focus on continuous improvement in lean cellular manufacturing. These facilities, alongside our European and US operations, offer sales, service and production support for the entire Rotary Power product range. A worldwide network of distribution partnerships provide additional support all over the world.

OUR BUSINESS

We recognise the importance of developing partnerships with our customers. That's why we offer flexibility in design, delivery and service to meet our customer's requirements.

Partnerships with our supply chain are key to Rotary Power's success and allow us to deliver excellent service in order to exceed expectations.

OUR PEOPLE

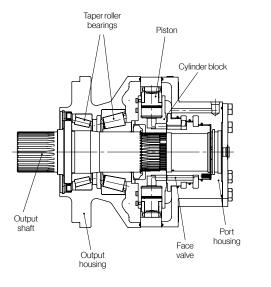
People are at the centre of everything we do. As an innovative engineering and manufacturing business we take recruitment and career development very seriously.

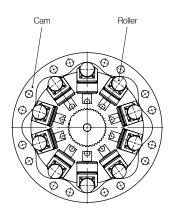
As part of the British Engines Group, we operate a training and development programme that maintains a strong focus on in-house manufacturing and a commitment to local employment. Our apprenticeship and graduate schemes provide the opportunity to develop and nurture engineering talent from an early stage.

OUR FUTURE

Whether in product design or internal processes and systems, our engineers are actively encouraged to develop new ideas within design and manufacturing. This ensures that we are at the forefront of customer and sector led innovation, whilst continuously improving our business.

Our team of in-house design engineers invest time into understanding our customer's application and work with them to deliver value added solutions, customised to their application.




The XJ range of hydraulic motors offer displacements from 260 to 5,010 cc/rev. The XJ05 is the smallest of the range with displacements from 260 to 565 cc/rev, complemented by the larger XJ20 and XJ40 motors extending the displacement range to 2,505 and 5,010 cc/rev.

The XJ motor has a range of features and options designed to suit your specific application:

- · Radial piston, multi-stroke operation
- Modular design
- Two speed options
- Parking brake options
- Freewheel capability
- Multiple mounting arrangements
- 350 bar continuous pressure
- Fast delivery options

The motor is designed with a rotating cylinder block connected to the drive shaft, which is mounted in taper roller bearings within the motor housing. This offers a high radial and axial load carrying capacity.

The pistons are located radially within the bores of the cylinder block. When oil is fed under pressure through the face valve and into the cylinder block, the pistons attempt to move outwards. The rollers react on the incline of the cam profile and this action produces rotation of the cylinder block.

The rate of flow to the motor will determine the speed at which the piston moves out against the cam ring and consequently the rotational speed of the motor. Once the power stroke is complete, the pistons return into the bore by the action of the reverse cam slope, ready for the next pressure cycle.

With units operating all over the world in a variety of applications including industrial, mobile and marine, the XJ range offers real application options for the future.

PRODUCT FEATURES

Fluids	HL; HLP to DIN 51524 Other specified fluids are possible.
Normal operating viscosity range	20 to 200 cSt
Maximum intermittent viscosity range	10 to 2,000 cSt
Normal operating temperature range	+15°C to +70°C [+59°F to +158°F]
Maximum intermittent temperature range	-20° to +80° C [-4°F to +176°F]
Fluid cleanliness	NAS 1638 class 9 / ISO code 18/15

FIRST DISPLACEMENT

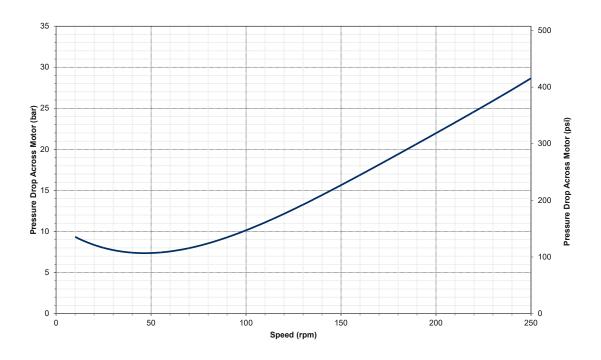
Displacement option	Υ	Α	В	С	D	E
Geometric displacement (cc/rev) [in³]	260	373	424	472	519	565
	[15.9]	[22.8]	[25.9]	[28.8]	[31.7]	[34.5]
Specific torque (Nm/bar) [lbf.ft/psi]	4.1	5.9	6.7	7.5	8.3	9.0
	[0.21]	[0.30]	[0.34]	[0.38]	[0.42]	[0.46]
Max. continuous speed (rpm)	300	250	230	210	200	180
Max. continuous power (kW) [hp]	29	29	29	29	29	29
	[38.9]	[38.9]	[38.9]	[38.9]	[38.9]	[38.9]
Max. continuous pressure (bar) [psi]	350	350	350	350	350	350
	[5,076]	[5,076]	[5,076]	[5,076]	[5,076]	[5,076]
Max. pressure (bar)* [psi]	450	450	450	450	450	450
	[6,527]	[6,527]	[6,527]	[6,527]	[6,527]	[6,527]

SECOND DISPLACEMENT

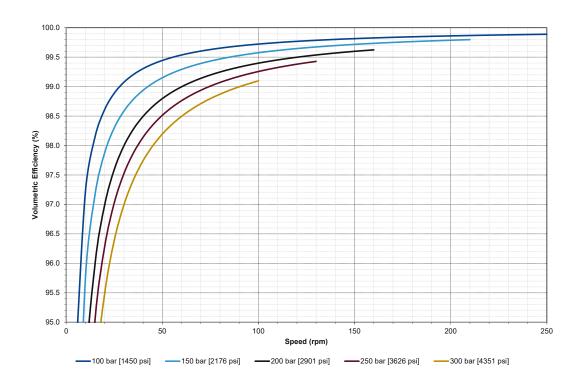
Nominal displacement (cc/rev)	Υ	Α	В	С	D	E
Geometric displacement (cc/rev) [in³]	130	186.5	212	236	259.5	282.5
	[7.9]	[11.4]	[12.9]	[14.4]	[15.8]	[17.2]
Specific torque (Nm/bar) [lbf.ft/psi]	2.1	3.0	3.4	3.8	4.1	4.5
	[0.11]	[0.15]	[0.17]	[0.19]	[0.21]	[0.23]
Max. continuous speed (rpm)	330	310	280	260	240	220
Max. continuous power (kW) preferred direction [hp]	19	19	19	19	19	19
	[25.5]	[25.5]	[25.5]	[25.5]	[25.5]	[25.5]
Max. continuous power (kW) non-preferred direction [hp]	15	15	15	15	15	15
	[20.1]	[20.1]	[20.1]	[20.1]	[20.1]	[20.1]
Max. continuous pressure (bar) [psi]	350	350	350	350	350	350
	[5,076]	[5,076]	[5,076]	[5,076]	[5,076]	[5,076]
Max. pressure (bar)* [psi]	450	450	450	450	450	450
	[6,527]	[6,527]	[6,527]	[6,527]	[6,527]	[6,527]

 $^{{}^{\}star}\text{Maximum values should only be applied for a small portion of the duty cycle.}$

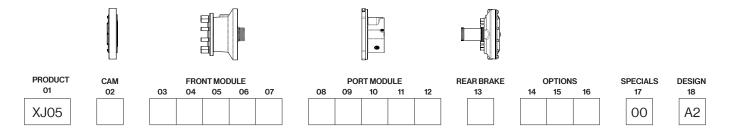
Weight of motor without oil


Sizes are listed in mm, inches shown in brackets

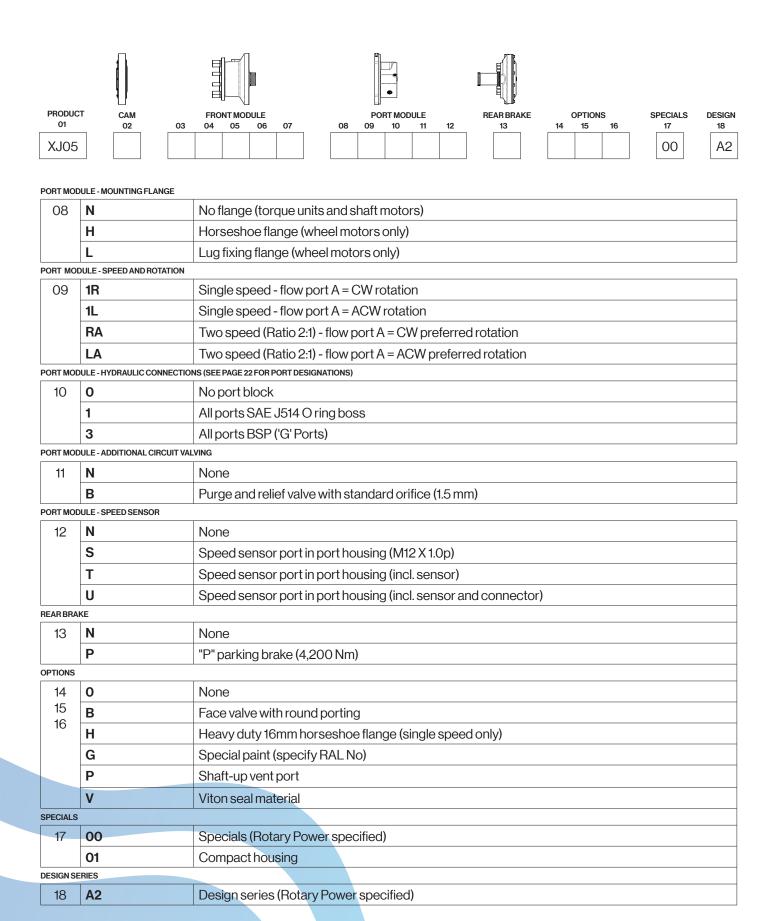
QUICK SELECTION DIAGRAM


Based on your torque and speed requirements, the diagram below can be used to help determine which cam size best suits your application. Shown for both maximum displacement (1D) and minimum displacement (2D), the diagram outlines the limits of the motor based on its continuous power rating.

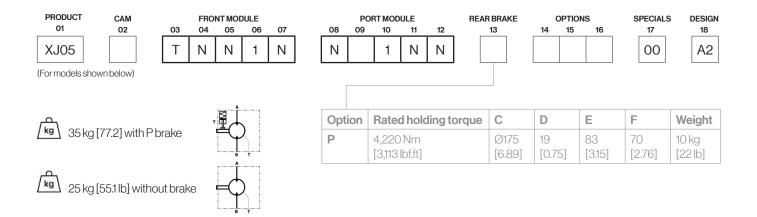
NO LOAD PRESSURE DROP



VOLUMETRIC EFFICIENCY

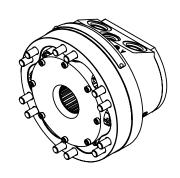

All performance graphs plotted for maximum displacement (565 cc/rev) using ISO46 fluid at 50° C.

MOTOR ORDER CODE

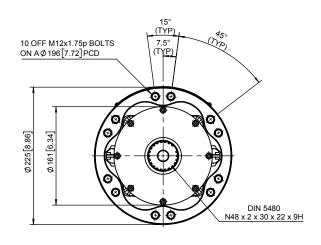


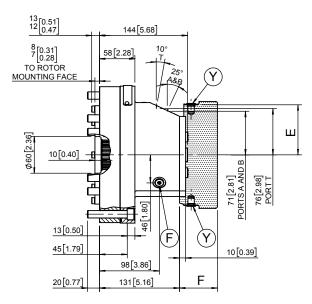
PRODUCT

PRODUCT		
01	XJ05	Radial piston motor
CAM - DISI	PLACEMENT	
02	Υ	260 cc/rev
	Α	373 cc/rev
	В	424 cc/rev
	С	472 cc/rev
	D	519 cc/rev
	E	565 cc/rev
FRONT MO	DDULE - CASE STYLE	
03	Т	Torque unit
	S	Shaft motor front case flange
	W	Wheel motor no case flange
FRONT MO	DDULE - OUTPUT SHAFT	
04	N	No shaft (torque unit DIN 5480 - N48 x 2 x 30 x 22 x 9H spline - standard)
	E	No shaft (Torque unit DIN 5480 - N50 x 2 x 30 x 24 x 9H spline)
	D	Splined shaft DIN 5480 - W55 x 3 x 30 x 17 x 8f
	Α	Keyed shaft - Ø50
	K	Wheel output 10 off, Ø140 PCD, Ø92.7 spigot
	P	Wheel output 5 off, Ø140 PCD, Ø92.7 spigot
FRONT MO	DDULE - OUTPUT FITTINGS	
05	N	None (torque unit or shaft motor)
	Α	Wheel flange with studs fitted (standard)
	В	Wheel flange with studs and nuts fitted
	F	Wheel flange with through holes
	Н	Wheel flange with tapped holes
FRONT MO	DULE - SHAFT SEAL CONFIGU	RATION
06	1	Standard
	2 (WHEEL MOTORS ONLY)	Mechanical face seal
FRONT MO	DDULE - FRONT BRAKE	
07	N	No brake (standard)

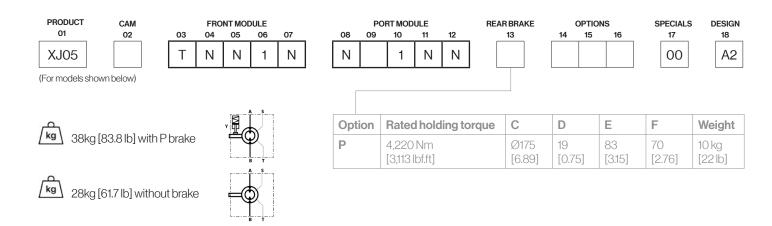


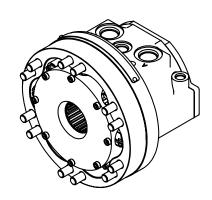
TORQUE UNIT SINGLE SPEED OPTION

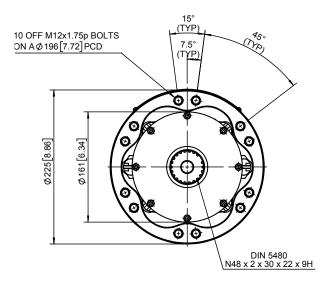


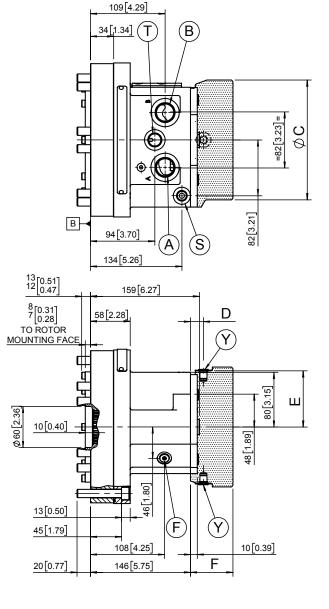

Rotor spline DIN 5480: N48 x 2 x 30 x 22 x 9H

Other spline options available, contact us for more information. See page 22 for hydraulic connection options.






TORQUE UNIT TWO SPEED OPTION



Rotor spline DIN 5480:N48 x 2 x 30 x 22 x 9H

Other spline options available, contact us for more information. See page 22 for hydraulic connection options.

TORQUE UNIT COMPACT HOUSING

PRODUCT CAM 01 02 XJ05

FRONT MODULE										
03	04	05	06	07						
Т	Е	Ζ	1	Ν						

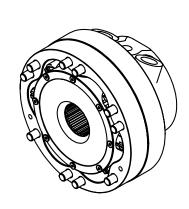
PORT MODULE								
80	09	10	11	12				
N		1	Ν	Ν				

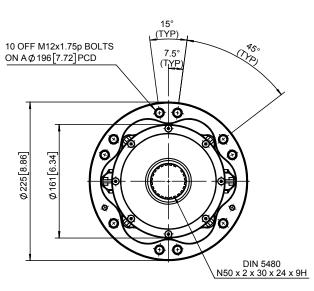
REAR BRAKE OPTIONS
13 14 15 16

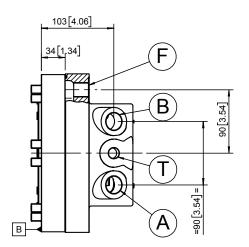
N

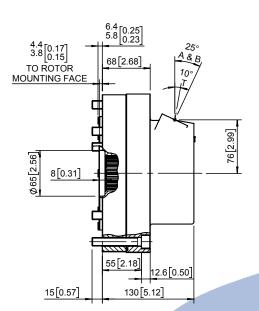
SPECIALS 17 01 DESIGN 18

(For models shown below)

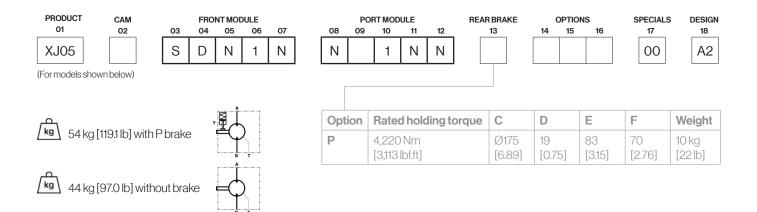


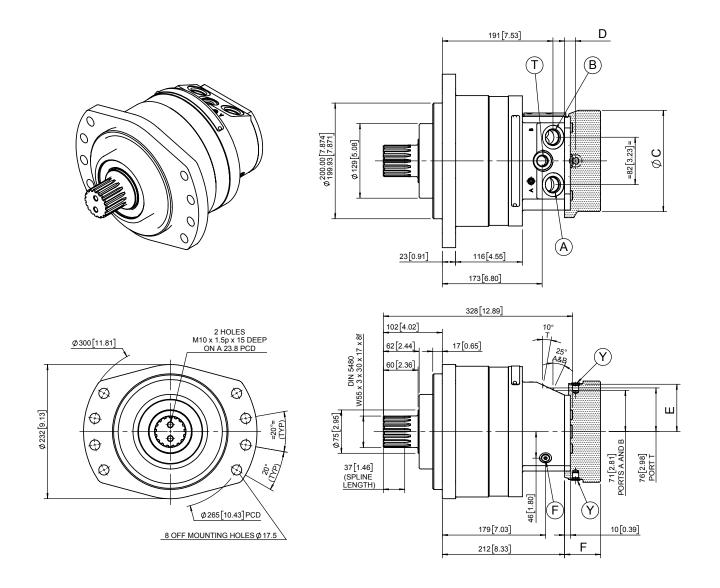


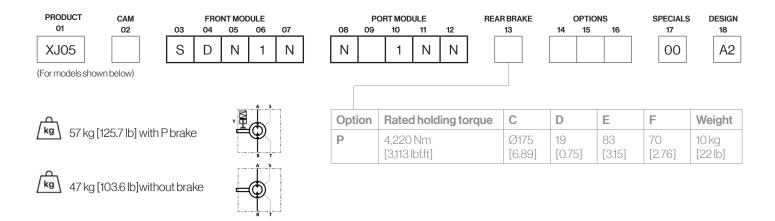

Rear parking brake not available with compact housing. Compact housing is only available in single speed.

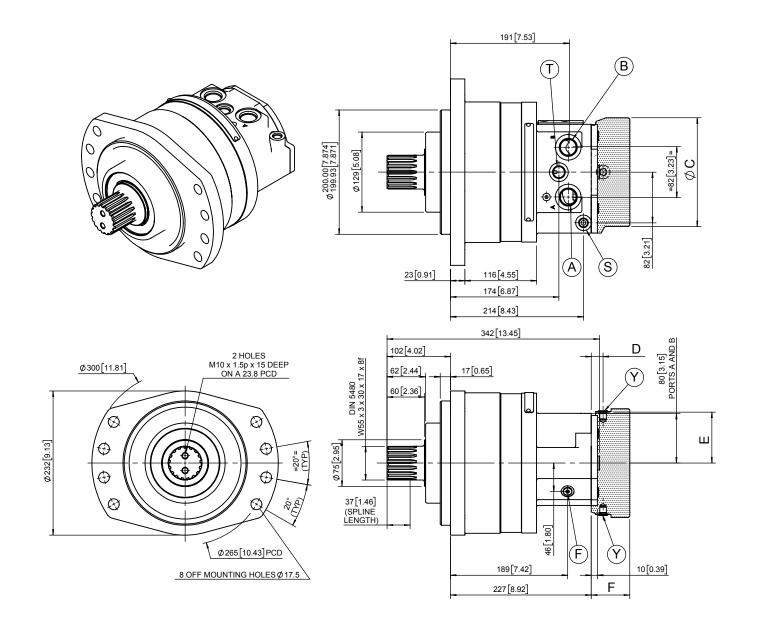

Rotor spline DIN 5480: N50 X 2 X 30 X 24 X 9H

Other spline options available, contact us for more information. See page 22 for hydraulic connection options.



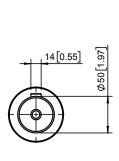


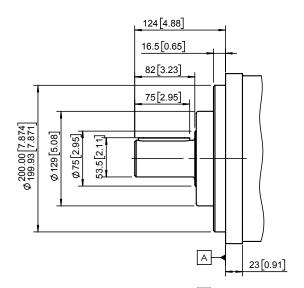

SHAFT MOTOR SINGLE SPEED WITH SPLINE


See page 22 for hydraulic connection options.

SHAFT MOTOR TWO SPEED WITH SPLINE

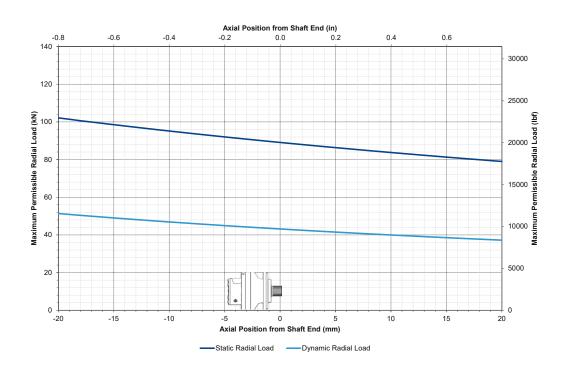
See page 22 for hydraulic connection options.

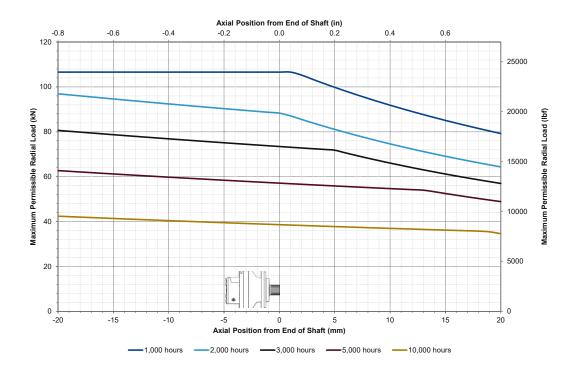



SHAFT MOTOR OUTPUT OPTIONS

PRODUCT CAM				FRONT MODULE							POF	RT MOD	ULE		REAR MODULE	REAR MODULE			S	;	SPECIALS		DESIGN	
01		02	_	03	04	05	06	07	_	80	09	10	11	12	13		14	15	16		17		18	
XJ05																					00		A2	

XJ05 HOUSING - KEYED OUTPUT

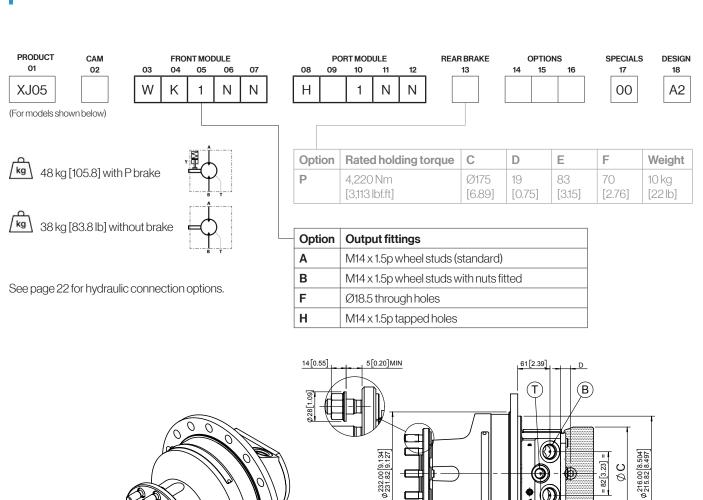

FRONT MODULE										
03	04	05	06	07						
S	А	N	1	N						

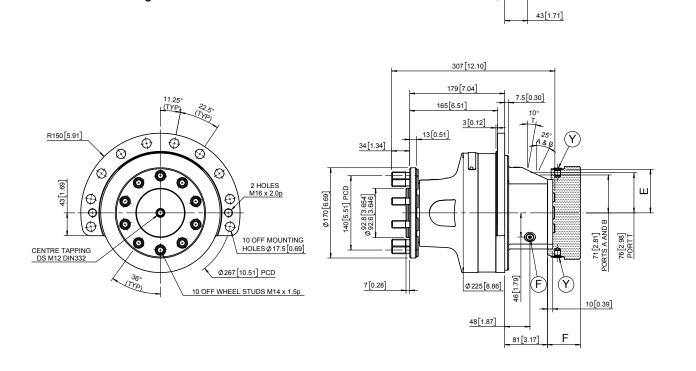


NOTE: ALL DIMENSIONS BEYOND FACE $\begin{tabular}{l} A \end{tabular}$ ARE AS PER MAIN DRAWING

SHAFT MOTOR PERMISSIBLE DYNAMIC AND STATIC RADIAL LOAD

SHAFT MOTOR L10 LIFE AT 150 BAR, 100 RPM

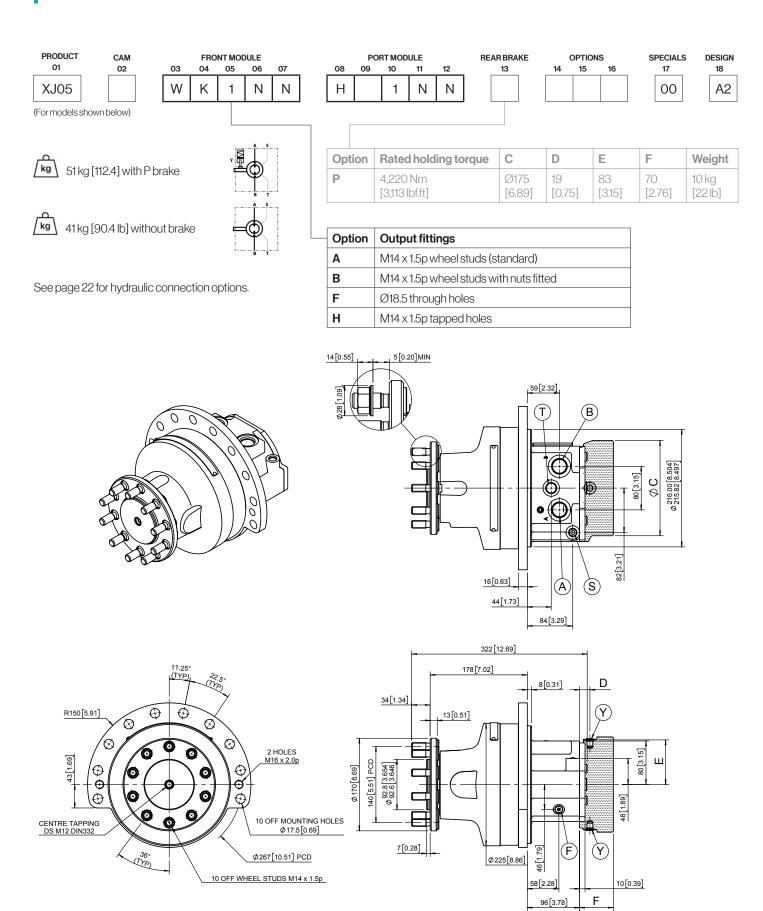

New life (hours) = $\frac{\text{plotted speed (rpm)} \times \text{plotted life (hours)}}{\text{desired speed (rpm)}}$

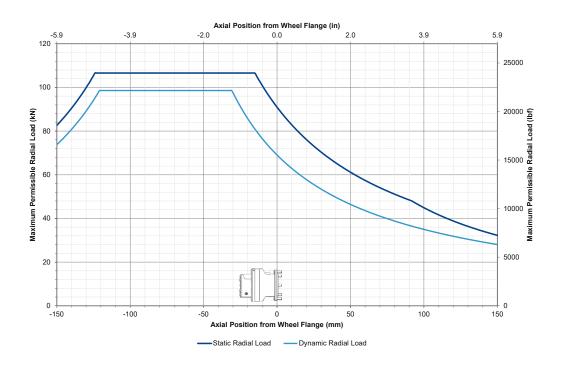

Contact us for alternative cycle duties.

All data is based on the standard spline motor output shaft, option D.

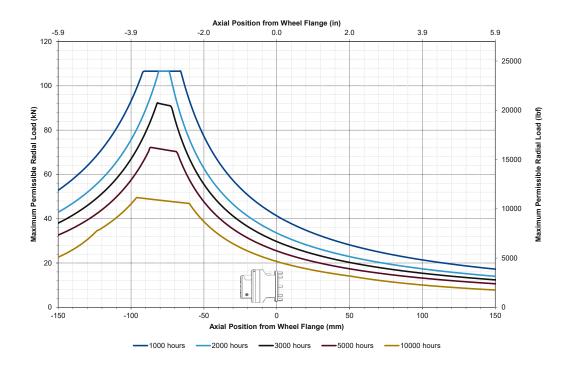
All data is based on theoretical calculations.

WHEEL MOTOR SINGLE SPEED OPTION



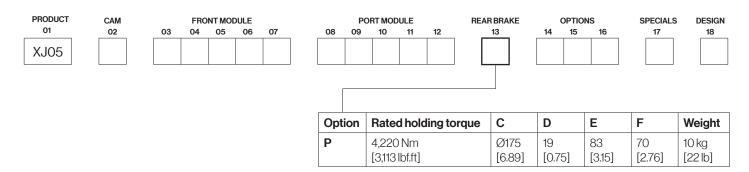

13.5 [0.53]

(A)


WHEEL MOTOR TWO SPEED OPTION

WHEEL MOTOR PERMISSIBLE DYNAMIC AND STATIC RADIAL LOAD

WHEEL MOTOR L10 LIFE AT 150 BAR, 100RPM

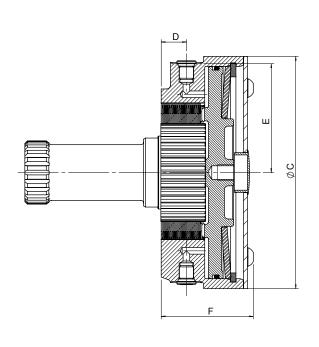

New life (hours) = $\frac{\text{plotted speed (rpm) x plotted life (hours)}}{\text{desired speed (rpm)}}$

Contact us for alternative cycle duties.

All data is based on the standard wheel motor output shaft, option L.

All data is based on theoretical calculations.

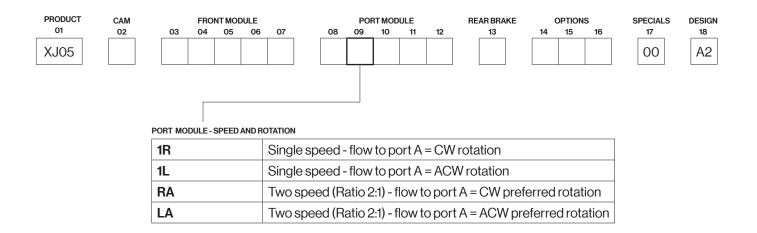
PARKING BRAKES



The XJ05 multi-disc parking brake is a spring applied, hydraulic release, fail safe brake designed to be used with XJ05 motors in static situations.

The multi-disc brake has a modular design which ensures it can be connected to any variant of the XJ05 motor.

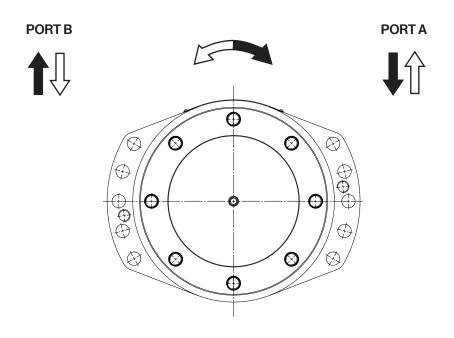
The brake has two hydraulic release ports, one at the top of the housing and one at the bottom. The brake can be manually released by removing the plug in the cover and using an M12 screw to pull the piston back.


PBRAKE

Brake static capacity when new	4220 Nm [3,113 lbf.ft]
Static capacity after ten dynamic uses	3,207.2 - 3,671.4 Nm (¹)(²)(³) [2,365.5 - 2,707.8 lbf.ft] (¹)(²)(³)
Volume to fill	100 cc [6.1 in³]
Volume to fully release brake	60 cc [3.6 in ³]
Min. pressure to fully release brake	12 bar [174 psi]
Max. acceptable pressure	30 bar [435 psi]
Time to release brake	< 0.5 seconds (4)(5)
Time to engage brake	<1 second (4)(5)
Emergency release fitting	M12 torqued to 60 Nm [45 lbf.ft]
Weight	10 kg [22 lbs]

- (1) Do not run in brake, wearing the plates will reduce the static capacity.
- (2) Dynamic use of the brake is not recommended and should only be used in emergency situations.
- (3) The disc pack should be replaced after ten dynamic uses.
- (4) Times may vary depending on fluid viscosity and valves used.
- (5) During low temperature applications, flushing the brake housing is recommended to maintain a constant oil viscosity. All data is based on ISO46 fluid at 50°C/122°F. If a different fluid will be used, please consult Rotary Power.

DIRECTION OF SHAFT ROTATION



The XJ motor code defines the starting direction of the motor. This is selected by the customer to best suit their application needs.

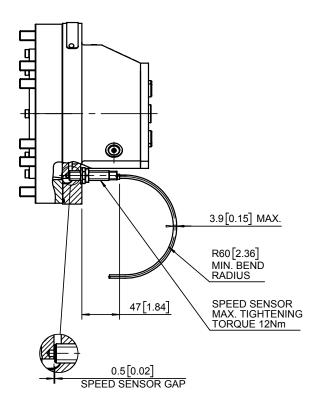
The starting direction is based on flow being supplied to port A. A single speed motor can have its starting direction reversed by supplying flow to port B.

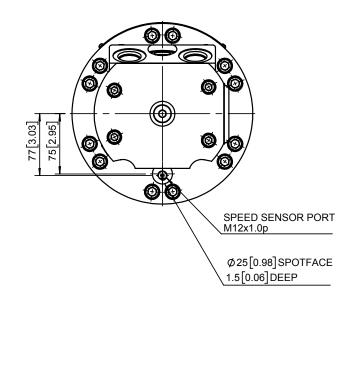
In two speed motors, pressurising port A is preferred as this prevents the motor from recirculating high pressure oil when shifted into second displacement. It is important to select the correct starting direction of a two speed motor to ensure optimum performance in the required direction.

DIRECTION OF SHAFT ROTATION VIEWED FROM THE SHAFT END

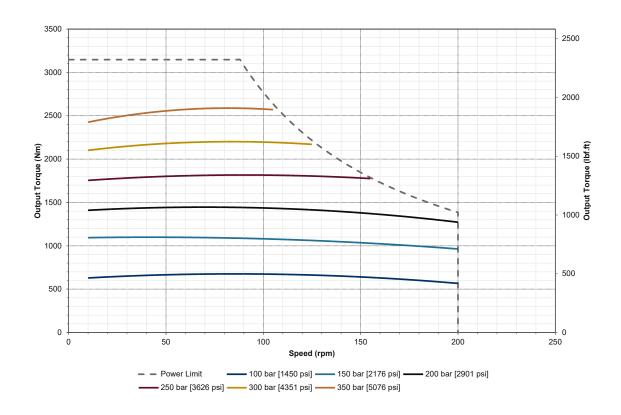
HYDRAULIC CONNECTIONS

PRODUCT	CAM		FRONT MODULE						POI	RT MOD	ULE		REAR BRAKE		OPTION	IS	SPECIALS	DESIGN
01	02	03	04	05	06	07	,	80	09	10	11	12	13	14	15	16	17	18
XJ05																	00	A2
			_															

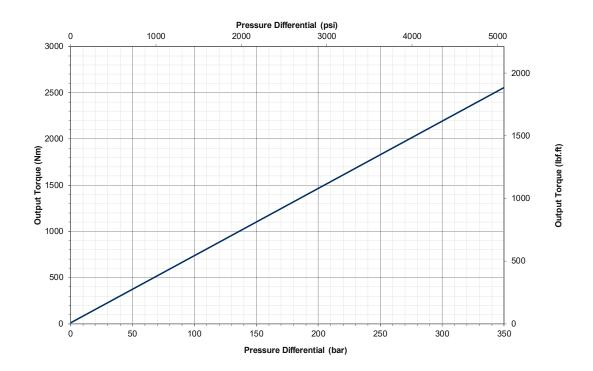

A 3/4" SAE J51	В	Т	S	F	Υ
3/4" SAE J51	1				I
(1-1/16"-12 UN		1/2" SAE J514 (3/4"-16 UNF)	3/8" SAE J514 (9/16"-18 UNF)	1/4" SAE J514 (7/16"- 20 UNF)	1/4" SAE J514 (7/16"-20 UNF)
G3/4"BSPP		G3/8"BSPP	G 3/8" BSPP	G 1/4" BSPP	G 1/4" BSPP
	`	G3/4"BSPP			


Max. pressures	bar	450	6	40	6	30
	[psi]	[6,527]	[90]	[580]	[90]	[435]

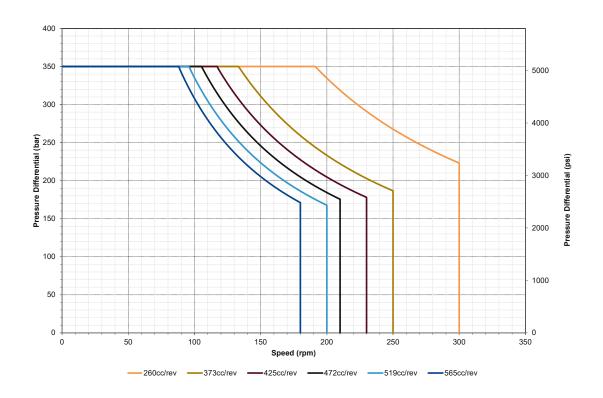
EXTRA OPTIONS SPEED SENSOR


This sensor provides a square wave signal used to calculate motor speed. Note that the sensor target is constructed using a modified XJ05 rotor. Integrating the sensor target into the rotor allows the envelope of the motor to remain consistent with standard sizes.

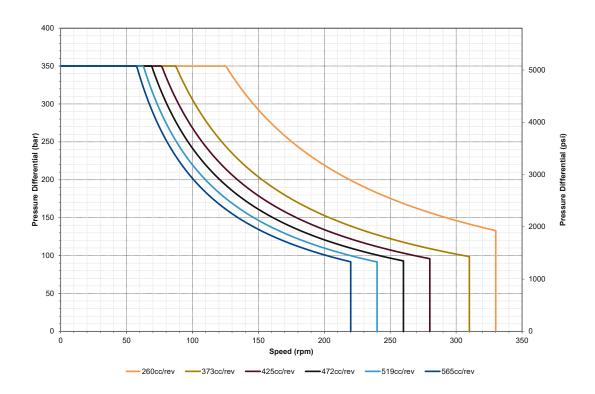
0	Differential bulleting and according		
Sensor type	Differential hall effect speed sensor		
Rotary Power part number	W94900005		
Supply voltage	8-32 VDC		
Current consumption	Max. without load: 15 mAMax. with load: 30 mA		
Plug type	 AMP 282105-1, 3 pins Integrated cable and connector only Cable length (including connector): 350 mm ± 20 mm 		
Signal output	 Square wave Push-pull outputs: Imax = ± 20 mA With pull-up resistor (for R=560 Ohm): Ulow < 2.5V, Uhigh > 0.95 * Usupply With pull-down resistor (for R=560 Ohm): Ulow < 0.1V, Uhigh > Usupply - 4.0 V 		
Frequency range	5 Hz – 20 kHz		
Standard number of pulses per revolution	53		
Operating temperature	-40°C to +125°C [-40°F to +257°F]		
Protection rating	Sensor head: IP68Cable outlet: IP67		



TORQUE OUTPUT

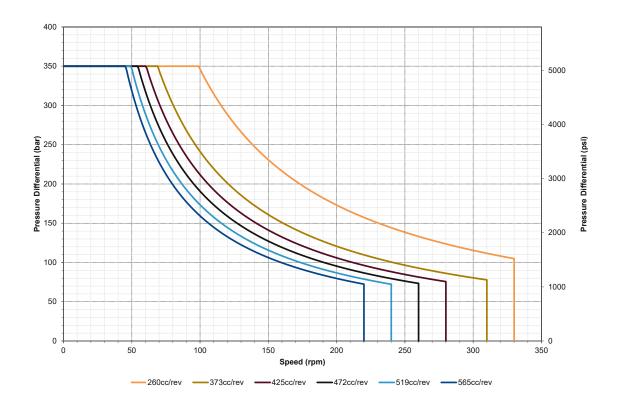

STARTING TORQUE

MAX. AVAILABLE TORQUE AT ZERO RPM



All performance graphs plotted for maximum displacement (565 cc/rev) using ISO46 fluid at 50°C.

POWER ENVELOPE SINGLE SPEED 29KW MAX. CONTINUOUS POWER



POWER ENVELOPE TWO SPEED 19KW MAX. CONTINUOUS POWER MIN. DISPLACEMENT - PREFERRED DIRECTION

All performance graphs plotted for maximum displacement (565 cc/rev) using ISO46 fluid at 50°C.

POWER ENVELOPE TWO SPEED 15KW MAX CONTINUOUS POWER MIN. DISPLACEMENT - NON PREFERRED DIRECTION

CALCULATIONS

Output torque (Nm) =

Motor displacement (cc) x delta pressure (bar) x ηm

20π

Flow (lpm) =

Motor displacement (cc) x rotational speed (rpm)

1000 x ην

Output power (kW) =

Output torque (Nm) x rotational speed (rpm)

9,550

Where:

 $\eta m = Mechanical efficiency$ $\eta v = Volumetric efficiency$

For approximate estimates of performance use:

 $\eta m = 0.95$ $\eta v = 0.95$

CONVERSIONS

 $Nm \rightarrow lbf.ft = x 0.7376$

 $N \rightarrow lbf = x 0.2248$

 $bar \rightarrow psi = x 14.5038$

 $cc \rightarrow in^3 = x \ 0.061$

 $lpm \rightarrow U.S. gpm = x 0.2641$

 $kW \rightarrow hp = x 1.341$

 $kg \rightarrow lb = x 2.2046$

NOTES

NOTES

NOTES

UK

Rotary Power Waldridge Way Simonside East Industrial Park South Shields Tyne and Wear NE34 9PZ

T: +44 (0) 191 276 4444 F: +44 (0) 191 276 4462 E: enquiries@rotarypower.com

USA

Rotary Power Inc. 3952 West Tickman Street Unit 4 Sioux Falls SD 57107

T: +1 (605) 361 5155 F: +1 (605) 362 1949 E: info@rotarypower.com

Germany

Rotary Power Vertriebsgesellschaft mbH Nordstrasse 78 52078 Aachen-Brand Germany

T: +49 (0) 241 955190 F: +49 (0) 241 9551919 E: info.ac@rotarypower.com

India

Rotary Power 6A, Attibele Industrial Area Anekal Taluk Bangalore 562 107

T: +91 (80) 782 0011 F: +91 (80) 782 0013

E: indiaenquiries@rotarypower.com

© Rotary Power Ltd 2019, 2021. All images and text, along with any intellectual property rights, contained in this catalogue are owned by Rotary Power Ltd and may not be used, reproduced or manipulated without the written permission of Rotary Power Ltd. The information contained in this catalogue is illustrative only. Rotary Power Ltd shall have no liability or responsibility in respect of reliance on the information contained in the catalogue. The information contained in the catalogue shall not form part of any contract subsequently put in place. We reserve the right to revise this document at any time, please check the Rotary Power Ltd website for the latest revision.

